58 research outputs found

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Evaluation du bruit de fond pi0 pour l'analyse d'apparition nu_e dans l'experience T2K. Premier étude de la phase de violation CP dans le secteur leptonique.

    No full text
    The T2K experiment is an off-axis long baseline neutrino flavour oscillation experiment. In T2K, the neutrino beam produced by an accelerator at J-PARC, Tokai, is detected using the Super Kamiokande (SK) detector, Kamioka, located 295 km away from Tokai. The accelerator produce a very pure nu_mu beam. During the propagation of neutrinos between their production point and SK they may change flavour. This effect is the neutrino flavour oscillation. The main objective of T2K is to measure some parameters describing the neutrino flavour oscillation, in particular of theta13 and deltaCP. This determination is performed by measuring the nu_mu -> nu_e oscillation probability, via the nu_e appearance search. In 2011, T2K was the first experiment to observe nu_e appearance and published a 2.5 sigma evidence that theta13 is not null. In this thesis we present the work done on the evaluation of the systematic error on the pi0 background reconstruction efficiency. The pi0 background is one of the main background sources affecting the nu_e appearance search through the detection of nu_e charged current quasi-elastic events at SK. Two different and complementary approaches have been developed. First, we have started developing a new device that partially reproduces the topology of physics events. Second, we have created a specific sample to estimate the systematic uncertainty of pi0 events reconstruction efficiency. This result was used in the official 2011 nu_e search. Furthermore, results from this sample will be used in future extended oscillation analysis. We also present the first study of the leptonic CP violation phase (deltaCP) using T2K nu_e data, assuming the recently measured value of theta13 by reactor experiments.L'expérience T2K est une expérience de recherche d'oscillation de saveur de neutrinos utilisant une base longue et la technique du faisceau hors axe. Dans T2K, un faisceau de neutrino est produit dans l'accélérateur J-PARC à Tokai, et est détecté auprès du détecteur Super Kamiokande (SK) à Kamioka, qui se situe à 295 km de Tokai. Cet accélérateur produit un faisceau très pur de nu_mu. Au cours de la propagation des neutrinos entre leur point de production et SK, ils peuvent changer de saveur. C'est ce phénomène que l'on appelle oscillation de saveur des neutrinos. L'objectif principal de T2K est de mesurer certains paramètres décrivant l'oscillation de saveur des neutrinos, et plus particulièrement les paramètres theta13 et deltaCP. Cette estimation est réalisée via la mesure de la probabilité d'oscillation nu_mu -> nu_e, par la recherche d'apparition de nu_e. En 2011, l'expérience T2K a été la première à observer l'apparition de nu_e et a ainsi pu exclure, à 2.5 sigma, une valeur nulle de theta13. Cette thèse présente le travail réalisé pour estimer l'erreur systématique de l'efficacité de reconstruction du bruit de fond pi0. Celui-ci est l'une des principales sources d'erreur affectant la recherche d'apparition de nu_e par la détection d'événements quasi-élastique à courant chargé à SK. Deux méthodes différentes et complémentaires ont été développées. Dans un premier temps, nous avons commencé le développement d'un nouvel outil qui reproduit partiellement la topologie des événements physiques, et en parallèle, nous avons crée un échantillon spécifique pour estimer l'incertitude systématique de l'efficacité de reconstruction des événements pi0. Ce dernier résultat a été utilisé dans l'analyse officielle d'apparition de nu_e publiée en 2011. Le nouvel échantillon produit sera également utilisé dans les futures analyses d'oscillation. En tenant compte de la valeur récemment mesurée de theta13 par des expériences faites auprès de réacteur, nous présentons dans cette thèse la première étude de la phase de violation CP dans le secteur leptonique (deltaCP) en utilisant les données nu_e de T2K

    JUNO Physics Prospects

    No full text
    JUNO is a multi-purpose underground neutrino observatory being constructed in the south of China. The main detector, with a 20 kton liquid scintillator target instrumented with about 18k 20” PMT and about 26k 3” PMT, will be strategically located 53 km from the Taishan and Yangjiang Nuclear Power Plants. Using reactor antineutrinos, JUNO will be able to measure several neutrino oscillation parameters with sub-percent precision as well as to determine the neutrino mass ordering to ∼3 σ over 6 years of operation. Furthermore, JUNO will have a broad physics program, ranging from studying neutrinos from other sources, such as solar and supernova neutrinos, to searching for BSM physics such as proton decay. This talk will give an overview on the JUNO’s broad physics potential.037th International Cosmic Ray Conference, ICRC 2021 Virtual, Berlin12 - 23 July 2021 Code 177942info:eu-repo/semantics/publishe

    Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA

    No full text
    International audienceThe determination of neutrino mass ordering (NMO) is one of the prime goals of several neutrinoexperiments.KM3NeT/ORCA and JUNO are two next-generation neutrino oscillation experiments both aiming ataddressing this question.ORCA determines the NMO by probing Earth matter effects on the oscillation ofatmospheric neutrinos in the GeV energy range.JUNO, on the other hand, is sensitive to the NMO by investigating the interference effects offast oscillations in the reactor electron antineutrino spectrum at medium baseline.This poster presents the potential of determining the NMO through a combined analysis ofJUNO and ORCA data.When measuring the Δm312\Delta m^2_{31} with a wrong ordering assumption, the best-fit valuesare different between the two experiments.This tension, together with good constraints on the Δm312\Delta m^2_{31} measurement by bothexperiments, enhances the combined NMO sensitivity beyond the simple sum of their sensitivities.The analysis shows that 5σ\sigma significance is reachable in less than 2 years of data takingwith both experiements for true normal neutrino mass ordering assuming current global best-fitvalues of the oscillation parameters, while 6 years will be needed for any other parameter set

    Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA

    No full text
    International audienceThe determination of neutrino mass ordering (NMO) is one of the prime goals of several neutrino experiments. KM3NeT/ORCA and JUNO are two next-generation neutrino oscillation experiments both aiming at addressing this question. ORCA can determine the NMO by probing Earth matter effects on the oscillation of atmospheric neutrinos in the GeV energy range. JUNO, on the other hand, is sensitive to the NMO by investigating the interference effects of fast oscillations in the reactor electron antineutrino spectrum at medium baseline. This contribution presents the potential of determining the NMO through a combined analysis of JUNO and ORCA data. When measuring the Δm312 with a wrong ordering assumption, the best-fit values are different between the two experiments. This tension, together with good constraints on the Δm312 measurement by both experiments, enhances the combined NMO sensitivity beyond the simple sum of their sensitivities. The analysis shows that a 5 σ significance is reachable in less than 2 years of data taking with both experiments for true normal neutrino mass ordering, assuming current global best-fit values of the oscillation parameters, while 6 years will be needed for any other parameter set

    Simulation Software of the JUNO Experiment

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose experiment, under construction in southeast China, that is designed to determine the neutrino mass ordering and precisely measure neutrino oscillation parameters. Monte Carlo simulation plays an important role for JUNO detector design, detector commissioning, offline data processing and physics processing. The broad energy range of interest, long lifetime and the scale of the JUNO experiment with the world's largest scintillator instrumented with many thousands of PMTs presents data processing challenges across all areas. This paper describes the JUNO simulation software, highlighting the challenges of JUNO simulation and solutions to meet these challenges including such issues as support for time correlated analysis, event mixing, event correlation and handling the simulation of many millions of optical photons
    corecore